Z 2 Z 4 - Additive Formally Self - Dual Codes

نویسنده

  • C. Fernández-Córdoba
چکیده

We study odd and even Z2Z4 formally self-dual codes. The images of these codes are binary codes whose weight enumerators are that of a formally self-dual code but may not be linear. Three constructions are given for formally self-dual codes and existence theorems are given for codes of each type defined in the paper.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear codes over Z4+uZ4: MacWilliams identities, projections, and formally self-dual codes

Linear codes are considered over the ring Z 4 + uZ 4 , a non-chain extension of Z 4. Lee weights, Gray maps for these codes are defined and MacWilliams identities for the complete, symmetrized and Lee weight enumer-ators are proved. Two projections from Z 4 + uZ 4 to the rings Z 4 and F 2 + uF 2 are considered and self-dual codes over Z 4 +uZ 4 are studied in connection with these projections. ...

متن کامل

Formally self-dual additive codes over F4

We introduce a class of formally self-dual additive codes over F4 as a natural analogue of binary formally self-dual codes, which is missing in the study of additive codes over F4. We define extremal formally self-dual additive codes over F4 and classify all such codes. Interestingly, we find exactly three formally self-dual additive (7, 27) odd codes over F4 with minimum distance d = 4, a bett...

متن کامل

Formally self-dual additive codes over F4 and near-extremal self-dual codes

We introduce a class of formally self-dual additive codes over F4 as a natural analogue of binary formally self-dual codes, which is missing in the study of additive codes over F4. We define extremal formally self-dual additive codes over F4 and classify all such codes. Interestingly, we find exactly three formally self-dual additive (7, 27) odd codes over F4 with minimum distance d = 4, a bett...

متن کامل

Self-Dual Codes over Z_2xZ_4

Self-dual codes over Z2 ×Z4 are subgroups of Z2 ×Zβ4 that are equal to their orthogonal under an inner-product that relates to the binary Hamming scheme. Three types of self-dual codes are defined. For each type, the possible values α, β such that there exist a code C ⊆ Z 2 ×Z 4 are established. Moreover, the construction of a Z2Z4-linear code for each type and possible pair (α, β) is given. Fi...

متن کامل

One-Lee weight and two-Lee weight $\mathbb{Z}_2\mathbb{Z}_2[u]$-additive codes

In this paper, we study one-Lee weight and two-Lee weight codes over Z2Z2[u], where u = 0. Some properties of one-Lee weight Z2Z2[u]-additive codes are given, and a complete classification of one-Lee weight Z2Z2[u]-additive formally self-dual codes is obtained. The structure of two-Lee weight projective Z2Z2[u] codes are determined. Some optimal binary linear codes are obtained directly from on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015